Abstract Title:

Behavioral assessment and identification of a molecular marker in a salicylate-induced tinnitus in rats.

Abstract Source:

Neuroscience. 2010 Feb 17;165(4):1323-32. Epub 2009 Dec 1. PMID: 19958810

Abstract Author(s):

K Kizawa, T Kitahara, A Horii, C Maekawa, T Kuramasu, T Kawashima, S Nishiike, K Doi, H Inohara

Article Affiliation:

Department of Otolaryngology-Head and Neck Surgery, Osaka University, School of Medicine, Suita-City, Osaka, Japan.

Abstract:

Tinnitus is a non-observable phantom sensation. As such, it is a difficult condition to investigate and, to date, no effective treatment has been developed. To approach this phantom sensation, we aimed to develop a rat behavioral model of tinnitus using salicylate, an active component of aspirin known to induce tinnitus. We also aimed to establish a molecular marker of tinnitus by assessing the expression of transient receptor potential cation channel superfamily V-1 (TRPV1) in the rat auditory pathway during salicylate-induced tinnitus. Animals were trained to perform "an active avoidance task": animals were conditioned by electrical footshock to move to the other side of the conditioning box when hearing a sound. Animals received a single injection of saline or salicylate (400 mg/kg i.p.) and false positive responses were measured 2 h after injection as the number of movements during a silent period. The number of responses in salicylate-treated animals was highest when the conditioned stimulus was 60 dB sound pressure level (SPL) and 16 kHz. This indicates that animals could feel tinnitus 2 h after salicylate injection, equivalent to that induced by 60 dB SPL and 16 kHz. By means of real-time PCR and western blot analysis, TRPV1 expression was significantly upregulated in spiral ganglion cells 2 h after salicylate injection and this upregulation together with the increase in the number of false positive responses was significantly suppressed by capsazepine (10 mg/kg i.p.), a specific antagonist of TRPV1. This suggests that salicylate could induce tinnitus through activation of TRPV1 in the rat auditory pathway.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.