n/a
Abstract Title:

Endothelial colony-forming cell-derived exosomes restore blood-brain barrier continuity in mice subjected to traumatic brain injury.

Abstract Source:

Exp Neurol. 2018 Jun 6 ;307:99-108. Epub 2018 Jun 6. PMID: 29883579

Abstract Author(s):

Weiwei Gao, Fei Li, Li Liu, Xin Xu, Baoliang Zhang, Yingang Wu, Dongpei Yin, Shuai Zhou, Dongdong Sun, Ying Huang, Jianning Zhang

Article Affiliation:

Weiwei Gao

Abstract:

Traumatic brain injury (TBI) tends to cause disruption of the blood-brain barrier (BBB). Previous studies have shown that intravenously or intracerebroventricularly infused human umbilical cord blood-derived endothelial colony-forming cells (ECFCs) can home to injury sites and improve outcomes in mice subjected to experimental TBI. Several reports have demonstrated that these cells did not incorporate directly into newly formed vasculature but instead stimulated the proliferation and migration of tissue-resident endothelial cells (ECs) via paracrine mechanisms. In the present study, exosomes, which range from 30 to 150 nm in diameter, were isolated from ECFC-conditioned medium. The exosomes were labeled with PKH67 ex vivo, and we observed that they were taken up by ECs with high efficiency after 12 h of incubation. Pretreatment with ECFC-derived exosomes promoted the migration of ECs subjected to scratch injury, and incubating ECs exposed to hypoxia with ECFC-derived exosomes decreased PTEN expression, stimulated AKT phosphorylation and increased tight junction (TJ) protein expression in the cells. Furthermore, in vivo delivery of ECFC-derived exosomes into TBI mice also inhibited PTEN expression and increased AKT expression, changes accompanied by reductions in Evans blue (EB) dye extravasation, brain edema and TJ degradation. These data demonstrated that ECFC-derived exosomes have beneficial effects on BBB integrity in mice with TBI.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.