Abstract Title:

TrkB agonist 7,8-dihydroxyflavone reverses an induced prepulse inhibition deficit selectively in maternal immune activation offspring: implications for schizophrenia.

Abstract Source:

Behav Pharmacol. 2021 08 1 ;32(5):404-412. PMID: 33883449

Abstract Author(s):

Emily J Jaehne, Elaine Mei San Chong, Alyssa Sbisa, Brendan Gillespie, Rachel Hill, Andrea Gogos, Maarten van den Buuse

Article Affiliation:

Emily J Jaehne


Reduced brain-derived neurotrophic factor (BDNF) signalling has been implicated in schizophrenia endophenotypes, including deficits in prepulse inhibition (PPI). Maternal immune activation (MIA) is a widely used neurodevelopmental animal model for schizophrenia but it is unclear if BDNF and its receptor, tropomyosin receptor kinase B (TrkB), are involved in PPI regulation in this model. Pregnant Long Evans rats were treated with the viral mimetic, polyinosinic-polycytidylic acid (poly I:C; 4 mg/kg i.v.), and nine male offspring from these dams were compared in adulthood to 11 male Long Evans controls. Offspring underwent PPI testing following injection with the TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF) (10 mg/kg i.p.), with or without the dopamine receptor agonist, apomorphine (APO; 1 mg/kg s.c.), or the dopamine releasing drug, methamphetamine (METH; 2 mg/kg s.c.). Acute administration of APO and METH caused the expected significant reduction of PPI. Acute administration of 7,8-DHF did not alter PPI on its own; however, it significantly reversed the effect of APO on PPI in poly I:C rats, but not in controls. A similar trend was observed in combination with METH. Western blot analysis of frontal cortex revealed significantly increased levels of BDNF protein, but not TrkB or phosphorylated TrkB/TrkB levels, in poly I:C rats. These findings suggest that, selectively in MIA offspring, 7,8-DHF has the ability to reverse PPI deficits caused by dopaminergic stimulation. This effect could be associated with increased BDNF expression in the frontal cortex. These data suggest that targeting BDNF signalling may have therapeutic potential for the treatment of certain symptoms of schizophrenia.

Study Type : Animal Study
Additional Links

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.