n/a
Abstract Title:

Flavonoids modulate tight junction barrier functions in hyperglycemic human intestinal Caco-2 cells.

Abstract Source:

Nutrition. 2020 Mar 5 ;78:110792. Epub 2020 Mar 5. PMID: 32473529

Abstract Author(s):

Sapna Sharma, Prabhanshu Tripathi, Jeetesh Sharma, Aparna Dixit

Article Affiliation:

Sapna Sharma

Abstract:

OBJECTIVES: Diabetes mellitus is a chronic disease requiring lifelong medical attention. With hundreds of millions suffering worldwide and a rapidly rising incidence, diabetes mellitus poses a great burden on health care systems. Recent studies investigating the underlying mechanisms involved in disease development in diabetes point to the role of the dysregulation of the intestinal barrier. Hyperglycemia-mediated tight junction deformity is known to contribute to leaky gut in various metabolic disorders. The present study aimed to investigate the role of oxidative stress on intestinal epithelial tight junction (TJ) barrier functions in hyperglycemia. Because many flavonoids are known to influence the cellular redox state, exploring these flavonoids may help to understand the role of TJ barrier in hyperglycemia-mediated oxidative stress, which in turn might unfold the association of oxidative stress and dysfunction of barrier-forming TJs.

METHODS: Caco-2 cells were stimulated with high glucose (HG), with or without flavonoids (quercetin, morin, naringenin), for 24 h. We determined cellular viability, levels of reactive oxygen species, and mitochondrial membrane potential in flavonoids treated HG-Caco-2 cells. The levels of the proinflammatory cytokines, glucose uptake, and expression of glucose transporters were determined on flavonoids treatment. We investigated the effect of flavonoids on TJs functions by measuring transepithelial electrical resistance (a TJ integrity marker), membrane permeability using tracer compounds, and the expressions levels of TJs related molecules on hyperglycemic Caco-2 cell monolayers.

RESULTS: We found that high glucose treatment resulted in reduced cell viability, increased reactive oxygen species production, measurable mitochondrial dysfunction, and decreased transepithelial electrical resistance, with increased membrane permeability. Treatment with the test flavonoids produced increased cell viability and reduced glucose uptake of HG-Caco-2 cells. A concomitant decrease in reactive oxygen species production, proinflammatory cytokines, and Glut-associated genes and proteins were identified with flavonoid treatment. Flavonoids prevented derangement of TJs protein interaction and stabilized membrane permeability.

CONCLUSIONS: These findings indicate that flavonoids confer protection against hyperglycemia-mediated oxidative stress and enhance intestinal barrier functions by modulating underlying intracellular molecular mechanisms.

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.