Abstract Title:

Assessment of the toxic effect of pesticides on honey bee drone fertility using laboratory and semifield approaches: A case study of fipronil.

Abstract Source:

Environ Toxicol Chem. 2017 Feb 22. Epub 2017 Feb 22. PMID: 28224659

Abstract Author(s):

Guillaume Kairo, Yannick Poquet, Haïthem Haji, Sylvie Tchamitchian, Marianne Cousin, Marc Bonnet, Michel Pelissier, André Kretzschmar, Luc P Belzunces, Jean-Luc Brunet

Article Affiliation:

Guillaume Kairo


Concern about the reproductive toxicity of plant protection products in honey bee reproducers is increasing. Because the reproductive capacity of honey bees is not currently considered during the risk assessment procedure performed during plant protection product registration, it is important to provide methods to assess such potential impairments. To achieve this aim, we used 2 different approaches that involved semifield and laboratory conditions to study the impact of fipronil on drone fertility. For each approach, the drones were reared for 20 d, from emergence to sexual maturity, and exposed to fipronil via a contaminated sugar solution. In both groups, the effects of fipronil were determined by studying life traits and fertility indicators. The results showed that the survival and maturity rates of the drones were better under laboratory conditions than under semifield conditions. Moreover, the drones reared under laboratory conditions produced more seminal fluid. Although these differences could be explained by environmental factors that may vary under semifield conditions, it was found that regardless of the approach used, fipronil did not affect survival rates, maturity rates, or semen volumes, whereas it did affect fertility by inducing a decrease in spermatozoa quantity that was associated with an increase in spermatozoa mortality. These results confirm that fipronil affects drone fertility and support the relevance of each approach for assessing the potential reproductive toxicity of plant protection products in honey bees. Environ Toxicol Chem 2017;9999:1-7.© 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

Study Type : Insect Study
Additional Links
Additional Keywords : Honeybee : CK(4) : AC(0)
Problem Substances : Pesticides : CK(2214) : AC(420)

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.