n/a
Abstract Title:

Circular RNA expression profiles in hippocampus from mice with perinatal glyphosate exposure.

Abstract Source:

Biochem Biophys Res Commun. 2018 Apr 26. Epub 2018 Apr 26. PMID: 29705695

Abstract Author(s):

Ning Yu, Yun Tong, Danni Zhang, Shanshan Zhao, Xinli Fan, Lihui Wu, Hua Ji

Article Affiliation:

Ning Yu

Abstract:

Glyphosate is the active ingredient in numerous herbicide formulations. The roles of glyphosate in embryo-toxicity and neurotoxicity have been reported in human and animal models. Recently, several studies have reported evidence linking neurodevelopmental disorders (NDDs) with gestational glyphosate exposure. However, the role of glyphosate in neuronal development is still not fully understood. Our previous study found that perinatal glyphosate exposure resulted in differential microRNA expression in the prefrontal cortex of mouse offspring. However, the mechanism of glyphosate-induced neurotoxicity in the developing brain is still not fully understood. Considering the pivotal role of Circular RNAs (circRNAs) in the regulation of gene expression, a circRNA microarray method was used in this study to investigate circRNA expression changes in the hippocampus of mice with perinatal glyphosate exposure. The circRNA microarrays revealed that 663 circRNAs were significantly altered in the perinatal glyphosate exposure group compared with the control group. Among them, 330 were significantly upregulated, and the other 333 were downregulated. Furthermore, the relative expression levels of mmu-circRNA-014015, mmu-circRNA-28128 and mmu-circRNA-29837 were verified using quantitative real-time polymerase chain reaction (qRT-PCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses demonstrated that stress-associated steroid metabolism pathways, such as aldosterone synthesis and secretion pathways, may be involved in the neurotoxicity of glyphosate. These results showed that circRNAs are aberrantly expressed in the hippocampus of mice with perinatal glyphosate exposure and play potential roles in glyphosate-induced neurotoxicity.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.