Abstract Title:

Tinospora cordifolia and arabinogalactan exert chemopreventive action during benzo(a)pyrene-induced pulmonary carcinogenesis: studies on ultrastructural, molecular, and biochemical alterations.

Abstract Source:

Eur J Cancer Prev. 2021 Jan ;30(1):21-39. PMID: 33122541

Abstract Author(s):

Yawei Dou, Fangling Tu, Yan Wu, Xiaodong Wang, Guannan Lu, Long Zhao

Article Affiliation:

Yawei Dou


The aim of the present study was to unveil the chemopreventive potentials of aqueous Tinospora cordifolia stem extract and its active component viz. Arabinogalactan against Benzo(a)pyrene-induced pulmonary carcinogenesis. Animals were divided into six groups: (I) Control, (II) aqueous Tinospora cordifolia (200 mg/kg b.wt, p.o.), (III) arabinogalactan (7.5 mg/kg b.wt, p.o.), (IV) benzo(a)pyrene (50 mg/kg b.wt, i.p.) at second and fourth week of study, (V) benzo(a)pyrene + aqueous Tinospora cordifolia, and (VI) benzo(a)pyrene + arabinogalactan. The benzo(a)pyrene treatment resulted in severe alterations in the cellular arrangement and morphology of the alveolar tissue in benzo(a)pyrene group. However, benzo(a)pyrene + aqueous Tinospora cordifolia and benzo(a)pyrene + arabinogalactan groups revealed classical features of apoptosis including chromatin condensation and formation of apoptotic bodies. Furthermore, Fourier transform Infrared spectroscopy analysis showed disturbed phospholipid saturation and protein secondary structures in benzo(a)pyrene treated animals. Depletion in relative glycogen and enhancement in total nucleic acid content was observed in benzo(a)pyrene treated animals, and the same was found to be restored upon arabinogalactan and aqueous Tinospora cordifolia supplementation. Benzo(a)pyrene insult also upregulated the phase I carcinogen metabolizing enzymes and differentially modulated the phase II metabolizing enzymes during pulmonary carcinogenesis. Also, depleted (reduced glutathione) and increased lipid peroxidation levels were observed in benzo(a)pyrene treated animals, which was found to be normalized upon aqueous Tinospora cordifolia and arabinogalactan administration. Clastogenic damage inflicted by benzo(a)pyrene was also reversed in benzo(a)pyrene + aqueous Tinospora cordifolia and benzo(a)pyrene + arabinogalactan group. Thus, the present study infers that aqueous Tinospora cordifolia and arabinogalactan showed promising anticancer activity against lung tumorigenesis in terms of ultrastructural, biochemical, and biomolecular aspects.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.