Article Publish Status: FREE
Abstract Title:

Tinospora cordifolia chloroform extract inhibits LPS-induced inflammation via NF-κB inactivation in THP-1cells and improves survival in sepsis.

Abstract Source:

BMC Complement Med Ther. 2021 Mar 20 ;21(1):97. Epub 2021 Mar 20. PMID: 33743681

Abstract Author(s):

Sheena Philip, Greeshma Tom, Padmaja Balakrishnan Nair, Sankar Sundaram, Asha Velikkakathu Vasumathy

Article Affiliation:

Sheena Philip


BACKGROUND: Tinospora cordifolia (Willd).Miers is a perennial climbing medicinal shrub that has been traditionally used for the treatment of chronic inflammatory ailments. Our previous pre- clinical studies on anti-inflammatory effects, proved that the chloroform extract of T. cordifolia (CETC) suppressed the LPS induced up-regulation of pro-inflammatory biomarkers, hence, further follow up study was carried out to evaluate whether CETC can exhibit a protective effect against LPS induced lethal endotoxemia in vivo and also to analyze the impact of CETC pre-treatment on the secretion of pro-inflammatory cytokines in vitro by THP-1 cells.

METHODS: To corroborate our previous preclinical studies on inflammation, we investigated the mechanism of the anti-inflammatory effect of T. cordifolia on THP-cells which were pre-incubated with CETC (30 min) and stimulated subsequently with LPS (1 μg/ml) for 20 h. Levels as well as gene expressions of various cytokines were compared with that of LPS alone incubated cells. Alongside, in vivo oral anti-inflammatory efficacy against LPS induced endotoxemia study was effectuated, wherein rats were administered with CETC 48, 24, 12 and 1 h prior to the injection of LPS and the survival of rats were monitored upto 10 days. Cytokine levels were quantified by ELISA. Nitrite levels were measured using Griess reagent. Expression of pro-inflammatory proteins was inspected in rat tissues by histochemical and immuno -histochemical examinations.

RESULTS: CETC was able to down-regulate the up-regulation of pro-inflammatory biomarkers in THP-1 macrophages though blockade of NF-κB nuclear translocation and could improve the survival rate during endotoxemic episodes with a marked suppression of the tissue expression of pro-inflammatory proteins.

CONCLUSION: These findings concomitantly reveal the anti-inflammatory mechanism of CETC and support us to move forward for the development of drugs against disorders resulting from deregulated immune reactions.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.