Abstract Title:

Transient endothelial dysfunction induced by sugar-sweetened beverage consumption may be attenuated by a single bout of aerobic exercise.

Abstract Source:

Microvasc Res. 2017 Jul 31 ;115:8-11. Epub 2017 Jul 31. PMID: 28772105

Abstract Author(s):

Pia Varsamis, Guillaume Walther, Bianca Share, Frances Taylor, Simon Stewart, Christian Lorenzen, Jordan Loader

Article Affiliation:

Pia Varsamis


BACKGROUND: This study assessed whether aerobic exercise would attenuate microvascular endothelial dysfunction induced by commercial sugar-sweetened beverage (SSB) consumption.

METHODS: Eleven healthy males participated in this randomized, single-blind crossover study. Cutaneous microvascular endothelial function was assessed using laser speckle contrast imaging coupled with post-occlusive reactive hyperemia before and after a) consumption of water; b) consumption of a commercial SSB; c) 30min of aerobic exercise followed by water consumption; and d) 30 minutes of aerobic exercise followed by SSB consumption. Blood glucose and arterial pressure responses were also monitored. Volumes of water and SSB consumed (637.39±29.15 mL) were individualized for each participant, ensuring SSB consumption delivered 1 g of sucrose per kg of body weight. Exercise was performed at 75% of the maximal oxygen uptake heart rate.

RESULTS: Compared to water consumption, the commercial SSB elevated blood glucose concentrations in both sedentary (4.69±0.11 vs. 7.47±0.28 mmol/L, P<0.05) and exercised states (4.95±0.13 vs. 7.93±0.15 mmol/L, P<0.05). However, the decrease in microvascular endothelial function observed following sedentary SSB consumption, expressed as the percentage increase from baseline (208.60±22.40 vs. 179.83±15.80%, P=0.01) and the change in peak hyperemic blood flux from basal to post-intervention assessments (-0.04±0.03 vs. -0.12±0.02 ΔCVC, P=0.01), was attenuated following 30min of aerobic exercise.

CONCLUSIONS: To our knowledge, this is the first study to provide evidence that a single bout of aerobic exercise may prevent transient SSB-mediated microvascular endothelial dysfunction.

Study Type : Human Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.