n/a
Article Publish Status: FREE
Abstract Title:

Exercise and Urtica dioica extract ameliorate hippocampal insulin signaling, oxidative stress, neuroinflammation, and cognitive function in STZ-induced diabetic rats.

Abstract Source:

Biomed Pharmacother. 2021 Apr 8 ;139:111577. Epub 2021 Apr 8. PMID: 33839493

Abstract Author(s):

Masoud Rahmati, Maryam Keshvari, Rahim Mirnasouri, Farzaneh Chehelcheraghi

Article Affiliation:

Masoud Rahmati

Abstract:

INTRODUCTION: Diabetes mellitus is related to cognitive impairments and molecular abnormalities of the hippocampus. A growing body of evidence suggests that Urtica dioica (Ud) and exercise training (ET) have potential therapeutic effects on diabetes and its related complications. Therefore, we hypothesized that the combined effect of exercise training (ET) and Ud might play an important role in insulin signaling pathway, oxidative stress, neuroinflammation, and cognitive impairment in diabetic rats.

METHODS: Forty animals were divided into five groups (N = 8): healthy-sedentary (H-sed), diabetes-sedentary (D-sed), diabetes-exercise training (D-ET), diabetes-Urtica dioica (D-Ud), diabetes-exercise training-Urtica dioica (D-ET-Ud). Streptozotocin (STZ) (Single dosage; 45 mg/kg, i.p.) was used to induce diabetes. Then, ET (moderate intensity/5day/week) and Ud extract (50 mg/kg, oral/daily) were administered for six weeks. We also investigated the effects of ET and Ud on cognitive performance (assessed through Morris Water Maze tests), antioxidant capacity, and lipid peroxidation markers in hippocampus. Furthermore, we measured levels of insulin sensitivity and signaling factors (insulin-Ins, insulin receptor-IR and insulin-like growth factor-1 receptor-IGF-1R), and neuroinflammatory markers (IL-1 β, TNF-α). This was followed by TUNEL assessment of the apoptosis rate in all regions of the hippocampus.

RESULTS: D-sed rats compared to H-sed animals showed significant impairments (P < 0.001) in hippocampal insulin sensitivity and signaling, oxidative stress, neuroinflammation, and apoptosis, which resulted in cognitive dysfunction. Ud extract and ET treatment effectively improved these impairments in D-ET (P < 0.001), D-Ud (P < 0.05), and D-ET-Ud (P < 0.001) groups compared to D-sed rats. Moreover, diabetes mediated hippocampal oxidative stress, neuroinflammation, insulin signaling deficits, apoptosis, and cognitive dysfunction was further reversed by chronic Ud+ET administration in D-ET-Ud rats (P < 0.001) compared to D-sed animals.

CONCLUSIONS: Ud extract and ET ameliorate cognitive dysfunction via improvement in hippocampal oxidative stress, neuroinflammation, insulin signaling pathway, and apoptosis in STZ-induced diabetic rats. The results of this study provide new experimental evidence for using Ud+ET in the treatment of hippocampal complications and cognitive dysfunction caused by diabetes.

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.