n/a
Article Publish Status: FREE
Abstract Title:

Vitamin D3 Stimulates Proliferation Capacity, Expression of Pluripotency Markers, and Osteogenesis of Human Bone Marrow Mesenchymal Stromal/Stem Cells, Partly through SIRT1 Signaling.

Abstract Source:

Biomolecules. 2022 02 18 ;12(2). Epub 2022 Feb 18. PMID: 35204824

Abstract Author(s):

Ana Borojević, Aleksandra Jauković, Tamara Kukolj, Slavko Mojsilović, Hristina Obradović, Drenka Trivanović, Milena Živanović, Željko Zečević, Marija Simić, Borko Gobeljić, Dragana Vujić, Diana Bugarski

Article Affiliation:

Ana Borojević

Abstract:

The biology of vitamin D3 is well defined, as are the effects of its active metabolites on various cells, including mesenchymal stromal/stem cells (MSCs). However, the biological potential of its precursor, cholecalciferol (VD3), has not been sufficiently investigated, although its significance in regenerative medicine-mainly in combination with various biomaterial matrices-has been recognized. Given that VD3 preconditioning might also contribute to the improvement of cellular regenerative potential, the aim of this study was to investigate its effects on bone marrow (BM) MSC functions and the signaling pathways involved. For that purpose, the influence of VD3 on BM-MSCs obtained from young human donors was determined via MTT test, flow cytometric analysis, immunocytochemistry, and qRT-PCR. Our results revealed that VD3, following a 5-day treatment, stimulated proliferation, expression of pluripotency markers (NANOG, SOX2, and Oct4), and osteogenic differentiation potential in BM-MSCs, while it reduced their senescence. Moreover, increased sirtuin 1 (SIRT1) expression was detected upon treatment with VD3, which mediated VD3-promoted osteogenesis and, partially, the stemness features through NANOG and SOX2 upregulation. In contrast, the effects of VD3 on proliferation, Oct4 expression, and senescence were SIRT1-independent. Altogether, these data indicate that VD3 has strong potential to modulate BM-MSCs' features, partially through SIRT1 signaling, although the precise mechanisms merit further investigation.

Study Type : In Vitro Study
Additional Links
Pharmacological Actions : Osteogenic : CK(167) : AC(64)

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.