n/a
Abstract Title:

Vitexin alleviates ox-LDL-mediated endothelial injury by inducing autophagy via AMPK signaling activation.

Abstract Source:

Mol Immunol. 2017 05 ;85:214-221. Epub 2017 Mar 10. PMID: 28288411

Abstract Author(s):

Shaoli Zhang, Changlei Guo, Zhigang Chen, Peiyong Zhang, Jianhua Li, Yan Li

Article Affiliation:

Shaoli Zhang

Abstract:

Endothelial cell injury plays a crucial role in the development and pathogenesis of cardiovascular disease. Vitexin is a natural flavonoid characterized by anti-oxidative and anti-inflammatory properties. The purpose of this study was to investigate the effects of vitexin on ox-LDL-induced endothelial dysfunction and to explore the underlying molecular mechanisms. In the present study, vitexin was found to play a protective role against ox-LDL-induced endothelial injury. Vitexin significantly promoted cell viability and inhibited apoptosis in ox-LDL-treated HUVECs. The up-regulation of cleaved Caspase-3, cleaved Caspase-9 and Bax induced by ox-LDL were inhibited by treatment with vitexin; meanwhile, the down-regulation of Bcl-2 was suppressed by vitexin. Pretreatment with vitexin was found to inhibit the ox-LDL-induced overexpression of IL-1β, IL-6, TNF-α, E-selectin, ICAM1 and VCAM1. Moreover, vitexin reduced ox-LDL-induced oxidative stress by inhibiting the production of ROS and MDA, and by promoting the expression of SOD. Furthermore, we had shown that vitexin protected against the ox-LDL induced cell injury by activating autophagy. The protective effects of vitexin in ox-LDL-treated HUVECs were all reversed following treatment with the autophagy inhibitor 3-MA. In addition, we found that vitexin increased the expression of p-AMPK and decreased the expression of p-mTOR. The combination of the AMPK inhibitor Compound C plus vitexin significantly reversed the effects of vitexin in ox-LDL-treated HUVECs, such as the inhibition of autophagy, reduction in cell viability, increase in apoptosis and ROS production. In conclusion, these data suggest that vitexin ameliorates ox-LDL-mediated endothelial injury by inducing autophagy via AMPK signaling.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.