Article Publish Status: FREE
Abstract Title:

Ameliorative effect of water spinach, Ipomea aquatica (Convolvulaceae), against experimentally induced arsenic toxicity.

Abstract Source:

J Transl Med. 2015 ;13(1):81. Epub 2015 Mar 5. PMID: 25890105

Abstract Author(s):

Tarun K Dua, Saikat Dewanjee, Moumita Gangopadhyay, Ritu Khanra, Muhammad Zia-Ul-Haq, Vincenzo De Feo

Article Affiliation:

Tarun K Dua


BACKGROUND: Ipomea aquatica (Convolvulaceae) is traditionally used against Arsenic (As) poisoning in folk medicines in India. The present study was designed to explore the therapeutic role of aqueous extract of I. aquatica (AEIA) against As-intoxication.

METHODS: AEIA was chemically standardized by spectroscopic and chromatographic analysis. The cytoprotective role of AEIA was measured on isolated murine hepatocytes. The effect on redox status were measured after incubating the hepatocytes with NaAsO2 (10 μM) + AEIA (400 μg/ml). The protective effect of AEIA (400 μg/ml) in expressions of apoptotic proteins were estimated in vitro. The protective role of AEIA was measured by in vivo assay in mice. Haematological, biochemical, As bioaccumulation and histological parameters were evaluated toensure the protective role of AEIA (100 mg/kg) against NaAsO2 (10 mg/kg) intoxication.

RESULTS: Phytochemical analysis revealed presence of substantial quantities of phenolics, flavonoids, saponins and ascorbic acid in AEIA. Incubation of murine hepatocytes with AEIA (0-400 μg/ml) + NaAsO2 (10 μM) exerted a concentration dependent cytoprotective effect. Incubation of murine hepatocytes with NaAsO2 (10 μM, ~ IC50) induced apoptosis via augmenting oxidative stress. NaAsO2 treated hepatocytes exhibited significantly (p < 0.01) enhanced levels of ROS production, lipid peroxidation and protein carbonylation with concomitant depletion of antioxidant enzymes (p < 0.05-0.01) and GSH (p < 0.01) levels. However, AEIA (400 μg/ml) + NaAsO2 (10 μM) could significantly (p < 0.05-0.01) reinstate the aforementioned parameters to near-normal status. Besides, AEIA (400 μg/ml) could significantly counteract (p<0.05-0.01) ROS mediated alteration in the expressions of apoptotic proteins viz. Bcl-2, BAD, Cyt C, Apaf 1, caspases, Fas and Bid. In in vivo bioassay, NaAsO2 (10 mg/kg) treatment in mice caused significantly (p < 0.05-0.01) elevated As bioaccumulation, ATP levels, DNA fragmentations and oxidative stress in the liver, kidney, heart, brain and testes along with alteration in cytoarchitecture of these organs. In addition, the serum biochemical and haematological parameters were significantly (p < 0.05-0.01) altered in the NaAsO2-treated animals. However, concurrent administration of AEIA (100 mg/ml) could significantly reinstate the NaAsO2-induced pathogenesis.

CONCLUSION: Presence of substantial quantities of dietary antioxidants within AEIA would be responsible for overall protective effect.

Print Options

Key Research Topics

Sayer Ji
Founder of

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022, Journal Articles copyright of original owners, MeSH copyright NLM.