Abstract Title:

Xanthohumol regulates miR-4749-5p-inhibited RFC2 signaling in enhancing temozolomide cytotoxicity to glioblastoma.

Abstract Source:

Life Sci. 2020 May 15:117807. Epub 2020 May 15. PMID: 32422304

Abstract Author(s):

Kuo-Hao Ho, Tai-Chih Kuo, Yi-Ting Lee, Peng-Hsu Chen, Chwen-Ming Shih, Chia-Hsiung Cheng, Ann-Jeng Liu, Chin-Cheng Lee, Ku-Chung Chen

Article Affiliation:

Kuo-Hao Ho


AIMS: Xanthohumol (XN), a natural prenylated flavonoid isolated from Humulus lupulus L. (hops), possess the therapeutic effects in glioblastoma multiforme (GBM), which is a grade IV aggressive glioma in adults. However, low bioavailability and extractive yield limit the clinical applications of XN. To comprehensively investigate XN-mediated gene networks in inducing cell death is helpful for drug development and cancer research. Therefore, we aim to identify the detailed molecular mechanisms of XN's effects on exhibiting cytotoxicity for GBM therapy.

METHODS AND KEY FINDINGS: XN significantly induced GBM cell death and enhanced temozolomide (TMZ) cytotoxicity, a first-line therapeutic drug of GBM. XN-mediated transcriptome profiles and canonical pathways were identified. DNA repair signaling, a well-established mechanism against TMZ cytotoxicity, was significantly correlated with XN-downregulated genes. Replication factor C subunit 2 (RFC2), a DNA repair-related gene, was obviously downregulated in XN-treated cells. Higher RFC2 levels which occupied poor patient survival were also observed in high grade GBM patients and tumors. Inhibition of RFC2 reduced cell viability, induced cell apoptosis, and enhanced both XN and TMZ cytotoxicity. By intersecting array data, bioinformatic prediction, and in vitro experiments, microRNA (miR)-4749-5p, a XN-upregulated microRNA, was identified to target to RFC2 3'UTR and inhibited RFC2 expression. A negative correlation existed between miR-4749-5p and RFC2 in GBM patients. Overexpression of miR-4749-5p significantly promoted XN- and TMZ-mediated cytotoxicity, and reduced RFC2 levels.

SIGNIFICANCE: Consequently, we suggest that miR-4749-5p targeting RFC2 signaling participates in XN-enhanced TMZ cytotoxicity of GBM. Our findings provide new potential therapeutic directions for future GBM therapy.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.