Abstract Title:

Antifungal activity of steroidal glycosides from Yucca gloriosa L.

Abstract Source:

Phytother Res. 2005 Feb;19(2):158-61. PMID: 15852482

Abstract Author(s):

A Favel, E Kemertelidze, M Benidze, K Fallague, P Regli


The antifungal activity of a crude steroidal glycoside extract from Yucca gloriosa flowers, named alexin, was investigated in vitro against a panel of human pathogenic fungi, yeasts as well as dermatophytes and filamentous species. The minimal inhibitory concentration (MIC) was determined by an agar dilution method. Alexin had a broad spectrum of antifungal activity, found to reside entirely in the spirostanoid fraction. The major tigogenyl glycosides, yuccaloeside B and yuccaloeside C, exhibited MICs between 0.39 and 6.25 microg[sol ]mL for all the tested yeast strains except for two (C. lusitaniae and C. kefyr). They were also active against several clinical Candida isolates known to be resistant to the usual antifungal agents. The MICs for the dermatophytes were between 0.78 and 12.5 microg[sol ]mL. The most sensitive filamentous species was A. fumigatus (MIC = 1.56 microg[sol ]mL). For most of the strains, the MICs of both glycosides were similar to those of the reference antifungal agent. Copyright 2005 John Wiley & Sons, Ltd.

Study Type : In Vitro Study
Additional Links
Pharmacological Actions : Antifungal Agents : CK(494) : AC(306)

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.