Article Publish Status: FREE
Abstract Title:

Zinc supplementation inhibits the high glucose‑induced EMT of peritoneal mesothelial cells by activating the Nrf2 antioxidant pathway.

Abstract Source:

Mol Med Rep. 2019 Jul ;20(1):655-663. Epub 2019 May 22. PMID: 31115566

Abstract Author(s):

Lili Gao, Yi Fan, Xiuli Zhang, Lina Yang, Wenyu Huang, Tianyu Hang, Mingyang Li, Shuyan Du, Jianfei Ma

Article Affiliation:

Lili Gao


The high glucose (HG)‑induced epithelial‑mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) serves an important role in peritoneal fibrosis (PF) during peritoneal dialysis. Our previous study reported that zinc (Zn) supplementation prevented the HG‑induced EMT of rat PMCs in vitro. In the present study, the role of Zn in HG‑induced EMT was investigated in vivo using a rat model of PF. Additionally, the molecular mechanisms underlying HG‑induced EMT were studied in human PMCs (HPMCs). In the rat model of PF, HG treatment increased the glucose transfer capacity and decreased the ultrafiltration volume. Histopathological analysis revealed peritoneal thickening, increased expression of vimentin and decreased expression of E‑cadherin. ZnSO4 significantly ameliorated the aforementioned changes, whereas Zn inhibition by clioquinol significantly aggravated the effects of HG on rats.The effects of Zn on HPMCs was assessed using western blot analysis, Transwell assays and flow cytometry. It was revealed that Zn also significantly suppressed the extent of the EMT, and reduced reactive oxygen species production and the migratory ability of HG‑induced HPMCs, whereas Zn inhibition by N',N',N',N'‑tetrakis (2‑pyridylmethyl) ethylenediamine significantly potentiated the HG‑induced EMT of HPMCs. HG‑stimulated HPMCs exhibited increased expression of nuclear factor‑like 2 (Nrf2) in the nucleus, and total cellular NAD(P)H quinone dehydrogenase 1 (NQO1) and heme oxygenase-1 (HO‑1), the target proteins of the Nrf2 antioxidant pathway. Zn supplementation further promoted nuclear Nrf2 expression, and increased the expression of target proteins of the Nrf2 antioxidant pathway, whereas Zn depletion decreased nuclear Nrf2, NQO1 and HO‑1 expression compared withthe HG group. In conclusion, Zn supplementation was proposed to suppress the effects of HG on the EMT by stimulating the Nrf2 antioxidant pathway and subsequently reducing oxidative stress in PMCs.

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.